
www.datascience.fm
Copyright 2022

Pandas Walkthrough
In this walkthrough, you'll get to practice some of the concepts and skills covered in Pandas and
Scikit Learn. You are provided with the dataset to use. Make sure you run the first line in order
to be able to work with the data.

As you go through this notebook, certain places are left with double quotation marks (i.e "") or
underscore (i.e _) or both (i.e “__”). To complete this assignment, you must replace all the ""
with appropriate values, expressions, or statements to ensure that the notebook runs
appropriately. Some things to keep in mind:

1. Make sure to run all the code cells, otherwise, you may get errors like `NameError` for
undefined variables.

2. Do not change variable names, delete cells, or disturb other existing code.
3. In some cases, you may need to add some code cells or new statements before or after

the line of code containing the ""

Introduction to Pandas

To make data analysis quick and simple in Python, Pandas includes high-level data structures and
manipulation capabilities. Because pandas are built on top of NumPy, it is simple to use in
applications that focus on NumPy. Pandas have two data structures called Series and Dataframe. A
series is a 1D array while A DataFrame is a 2-dimensional data structure similar to a spreadsheet or
a SQL table. To get started with pandas, you can install them using the pip install pandas command

To demonstrate the analytics capabilities of Pandas, we will be using the Google play store dataset.
It is a publicly available dataset containing information such as app name, category, ratings, reviews,
etc. We will see how Pandas can be used to derive actionable insights to caption the Android
market. The data is stored in a Comma Separated Value (CSV) format. Pandas provide the
read_csv() function to read data stored as a CSV file into a pandas DataFrame. Before using
Pandas, we need to import it using the import keyword.

import pandas

import pandas as pd

read the data

playstore_df = pd.read_csv("Google_Playstore_cleaned.csv")

We can check the first and last N row(s) of the data using .head() and .tail()

Published under the Selfstart DataScience EBook Series

http://www.datascience.fm

www.datascience.fm
Copyright 2022

let's check the first 4 rows

playstore_df.head(4)

let's check the last 6 rows

playstore_df.tail(6)

Published under the Selfstart DataScience EBook Series

http://www.datascience.fm

www.datascience.fm
Copyright 2022

Indexing, Sorting and Filtering

To select a subset of the data, we can use either indexing operator [], attribute operator ., and
methods such as loc, iloc, at,iat etc. This can be used in combination with comparison operators to
make more powerful selection and filtering.

what is the total number of app category included in Playstore

total_cat = playstore_df["Category"].unique()

total_cat_no = len(total_cat)

print(f"The total number of app category in Google playstore is:

{total_cat_no}")

What category has the most app?

playstore_df["Category"].value_counts(ascending=False)

Published under the Selfstart DataScience EBook Series

http://www.datascience.fm

www.datascience.fm
Copyright 2022

What are the number of apps with 4+ star rating

we first slice the dataframe where the rating is greater four

four_star = playstore_df[playstore_df["Rating"] > 4.0]

then we can get the names of the app by specifying the AppName column

four_star_app = four_star["AppName"]

four_star_app

we can use the len() function to get the total number

print(f"There are {len(four_star_app)} apps with more than 4 star ratings")

Published under the Selfstart DataScience EBook Series

http://www.datascience.fm

www.datascience.fm
Copyright 2022

#What are the top 4 choice apps for teenagers?

print('Top 4 choices of teens')

we first get the apps rated "teen" using the loc method

teen_top = playstore_df.loc[(playstore_df.ContentRating == 'Teen')]

then we can sort the rows based on maximum number of installations for

each app

teen_top.sort_values(by='MaximumInstalls',ascending=False).head(4)

Q1: What are the top 5 apps prefered by teengers in the Adventure category?

print("These are the top 5 apps preferred by teens in Adventure category")

get the dataframe with "adventure" category and "teen" content rating

top_adventure_cat = ___.loc[(playstore_df.Category == "") &

(playstore_df.ContentRating == "")]

sort using maximum installation and display the result

___.sort_values(by="",ascending=___).head(5)

Published under the Selfstart DataScience EBook Series

http://www.datascience.fm

www.datascience.fm
Copyright 2022

Data Aggregation with Pandas
We can gather and express the data in a summary form using a combination of aggregate
functions in Pandas.

What is the most expensive app in the playstore?

get the row where the 'Price' column is maximum by using max() method

most_expensive = playstore_df[playstore_df["Price"] ==

playstore_df["Price"].max()]

get the app name by using the "AppName" column and use iloc to get only

the first row

most_expensive_name = most_expensive["AppName"].iloc[0]

get the price of the most expensive

most_expensive_price = playstore_df["Price"].max()

display the info

print(f"The most expensive app in Google play store is

{most_expensive_name} with a price of {most_expensive_price} USD")

Published under the Selfstart DataScience EBook Series

http://www.datascience.fm

www.datascience.fm
Copyright 2022

What is the size of the market in terms of number of downloads and price?

group the app using Category and get only the price Price and Installs

columns and get the sum

market_share = playstore_df.groupby("Category")[["Price",

"Installs"]].agg('sum')

sort the resulting dataframe by using the Price and then Installs

market_share_order = market_share.sort_values(by=["Price", "Installs"],

ascending=[False,False])

#display the info

market_share_order

Published under the Selfstart DataScience EBook Series

http://www.datascience.fm

www.datascience.fm
Copyright 2022

What is the average rating per category?

What is the average rating per category?

group the app by category and get the mean for each of the category

avg_rating = playstore_df.groupby("Category").mean()

sort the dataframe by using rating

avg_rating_sorted = avg_rating.sort_values(by="Rating", ascending=False)

display the info

avg_rating_sorted

Published under the Selfstart DataScience EBook Series

http://www.datascience.fm

www.datascience.fm
Copyright 2022

Q2: What is the least installed app?

get the row where the 'Installs' column is minimum by using min() method

least_installed = playstore_df[___[""] == playstore_df[""].min()]

get the app name by using the "AppName" column and use iloc to get only

the first row

least_installed_name = least_installed[""].iloc[]

get the number of installation for the app

least_installed = playstore_df["Installs"].___

display the information

print(f"The most expensive app in Google play store is

{least_installed_name} with {least_installed} number of installation")

Quick Analysis with Pivot table

With just a few lines of codes, we can use pivot tables to drill down into the granular details of our
data. Inorder to demonstrate this, we'll be using a subset of our data.

create a subset of the data

playstore_subset_df = playstore_df[['Category', 'Rating', 'ContentRating',

'Installs', 'Free', 'Price']]

now let's create our pivot table

rating_table = playstore_subset_df.pivot_table(index = "ContentRating")

display the info

rating_table

Published under the Selfstart DataScience EBook Series

http://www.datascience.fm

www.datascience.fm
Copyright 2022

We can as well use multiple index to answer some questions

What is the average installation, Price, and rating based on Content

rating and Type of the app?

create a pivot table

rating_table_expanded = playstore_subset_df.pivot_table(index =

["ContentRating", "Free"])

display the table

rating_table_expanded

Published under the Selfstart DataScience EBook Series

http://www.datascience.fm

www.datascience.fm
Copyright 2022

we can also customize the type of aggregation performed on different features

we need some functions from numpy so we have to import it

import numpy as np

What is the total number of installations and the average price per

category?

cat_pivot = playstore_subset_df.pivot_table(index = "Category", aggfunc =

{"Installs":np.sum,

"Price":np.mean})

cat_pivot

Published under the Selfstart DataScience EBook Series

http://www.datascience.fm

www.datascience.fm
Copyright 2022

Q3: Using Pivot table, find the average rating and highest price per category

create the table using np.mean on Rating and np.max on Price

price_rating_pivot = playstore_subset_df.___(index = "___", aggfunc =

{"Rating":___,

"___":np.max})

display the table

price_rating_pivot

Published under the Selfstart DataScience EBook Series

http://www.datascience.fm

www.datascience.fm
Copyright 2022

Time series with Pandas

We can leverage the power of Pandas to derive insights from our data based on time orientation. In
order to do this, we are going to take a subset of the original dataset.

extract a subset of the data

playstore_time_df = playstore_df[["Released", "Rating", "Price", "Installs"]]

let's convert the Released column to a datetime type

playstore_time_df["Released"] = pd.to_datetime(playstore_time_df['Released'],

infer_datetime_format=True, errors='coerce')

let's set the date as the index of the dataframe

playstore_time_df = playstore_time_df.set_index("Released")

display the first five rows

playstore_time_df.head(5)

Published under the Selfstart DataScience EBook Series

http://www.datascience.fm

www.datascience.fm
Copyright 2022

we can do a couple of other things such as extracting the year, month, and weekday name

playstore_time_df["Year"] = playstore_time_df.index.year

playstore_time_df["Month"] = playstore_time_df.index.month

playstore_time_df["MonthName"] = playstore_time_df.index.month_name()

playstore_time_df["WeekDayName"] = playstore_time_df.index.day_name()

display the first five rows

playstore_time_df.head()

What is the trend of App installation over the years?
First, before we plot our charts, we’ll need to import Matplotlib which is a Charting library in
Python

import matplotlib for plotting

import matplotlib.pyplot as plt

What is the year with most app installation

playstore_time_df["Installs"].plot()

#dsiplay the chart

plt.show()

Published under the Selfstart DataScience EBook Series

http://www.datascience.fm

www.datascience.fm
Copyright 2022

We can zoom in into a particular year, let’s see the price of apps in the year 2016.

playstore_time_df.loc["2016", "Price"].plot()

#display the chart

plt.show()

Published under the Selfstart DataScience EBook Series

http://www.datascience.fm

www.datascience.fm
Copyright 2022

Q4: What is the Installation trend in 2020? Dispaly using a line chart.

___.loc["__", "__"].plot()

#display the chart

plt.show()

Published under the Selfstart DataScience EBook Series

http://www.datascience.fm

www.datascience.fm
Copyright 2022

Using Functions in Pandas

For the purpose of organization and reusability, we can write our own custom functions in
Pandas

Let’s write a function that determines the proportion of free to paid apps

def get_app_proportion(df, col_name):

get the number of free app

free_app = len(df[df[col_name] == True])

get the number of paid app

paid_app = len(df[df[col_name] == False])

get the total number of paid and free apps

total_app = free_app + paid_app

calculate the proportion of free and paid app

free_prop = round((free_app/total_app)*100)

paid_prop = round((paid_app/total_app)*100)

display the info

print(f"The proportion of free to paid app is {free_prop}:{paid_prop}")

call the function

get_app_proportion(df = playstore_df, col_name = "Free")

Published under the Selfstart DataScience EBook Series

http://www.datascience.fm

www.datascience.fm
Copyright 2022

We can write another function to determine the percentage market share of each app by
category?

def market_share_pct(df):

first group by category and take the sum of Installs

mkt_share = df.groupby("Category").agg('sum')["Installs"]

take the percentage of every row using transform

mkt_share_pct = mkt_share.transform(lambda x:x/x.sum())*100

transfrom to frame and sort using Install

mkt_share_pct_sorted =

mkt_share_pct.to_frame().sort_values(by="Installs", ascending=False)

return mkt_share_pct_sorted

call the function

market_share_pct(playstore_df)

Published under the Selfstart DataScience EBook Series

http://www.datascience.fm

www.datascience.fm
Copyright 2022

Q5: what is the percentage market share of each app by content rating?

name the function as get_market_share

def ___(df):

first group by ContentRating and take the sum of Installs

share_by_rating = __.groupby("___").agg('sum')["Installs"]

take the percentage of every row using transform

share_by_rating_pct = share_by_rating.___(lambda x:x/x.sum())*100

transfrom to frame and sort using Install

share_by_rating_pct_sorted = ___.___().sort_values(by="___",

ascending=False)

return ___

call the function

get_market_share(playstore_df)

Published under the Selfstart DataScience EBook Series

http://www.datascience.fm

